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The Poisson multi-Bernoulli mixture (PMBM) and the multi-

Bernoulli mixture (MBM) are two multitarget distributions for which

closed-form filtering recursions exist. The PMBM has a Poisson birth

process, whereas the MBM has a multi-Bernoulli birth process. This

paper considers a recently developed formulation of the multitarget

tracking problem using a random finite set of trajectories, through

which the track continuity is explicitly established. A multiscan tra-

jectory PMBM filter and a multiscan trajectory MBM filter, with the

ability to correct past data association decisions to improve current

decisions, are presented. In addition, a multiscan trajectory MBM01

filter, in which the existence probabilities of all Bernoulli components

are either 0 or 1, is presented. This paper proposes an efficient im-

plementation that performs track-oriented N-scan pruning to limit

computational complexity, and uses dual decomposition to solve the

involvedmultiframe assignment problem.The performance of the pre-

sented multitarget trackers, applied with an efficient fixed-lag smooth-

ing method, is evaluated in a simulation study.

I. INTRODUCTION

Multitarget tracking (MTT) refers to the problem of
jointly estimating the number of targets and their tra-
jectories from noisy sensor measurements [1]. The num-
ber of targets and their trajectories can be time-varying
due to targets appearing and disappearing. In a general
MTT system, a multitarget tracker needs to tackle the
modeling of births and deaths of targets, as well as the
partitioning of noisy sensor measurements into poten-
tial tracks and false alarms; the latter is also referred to
as data association. The major approaches to MTT in-
clude the joint probabilistic data association (JPDA) fil-
ter [2], the multiple hypothesis tracker (MHT) [3]–[5],
and random finite set (RFS) [6] based multitarget filters
[7, Ch. 6].

The JPDA filter [2] seeks to calculate the marginal
distribution of each track. To accommodate for an un-
known and time-varying number of targets, the joint in-
tegrated probabilistic data association [8] extends the
basic JPDA [2] by incorporating target existence as an
additional random variable to be estimated. It has re-
cently been shown that the marginal data association
probabilities can be efficiently approximated using mes-
sage passing algorithms [9], [10].

MHT is described in a number of books; e.g., see [3,
Ch. 16] and [4, Chs. 6 and 7]. The model was made rigor-
ous in [11] through random finite sequences, under the
assumption that the number of targets present is con-
stant but unknown, with an a priori distribution that is
Poisson. In MHT, multiple data association hypotheses
are formed to explain the source of the measurements.
Each data association hypothesis assigns measurements
to previously detected targets, newly detected targets, or
false alarms.Data association uncertainty is captured by
the data hypothesis weight, and the target state uncer-
tainty is captured by the target state density distribution
conditioned on each hypothesis.

There are two types of MHT algorithms: the
hypothesis-oriented MHT (HOMHT) [12] and the
track-oriented MHT (TOMHT) [13], [14]. In HOMHT,
multiple global hypotheses are formed and evaluated
between consecutive time scans; the complete algorith-
mic approach was first developed by Reid [12]. The
TOMHToperates bymaintaining a number of single tar-
get hypothesis trees, each of which contains a number of
single target hypotheses explaining themeasurement as-
sociation history of a potential target.

A TOMHT algorithm usually uses a deferred deci-
sion logic to consider the data associations of measure-
ments from more than one scan, in the sense that the
hypotheses are propagated into the future in anticipa-
tion that subsequent data will resolve the uncertainty
[5]. Intuitively, measurements in more than one scan
may provide more accurate data association than those
in a single scan. The number of single target hypothe-
ses can be limited by performing N-scan pruning [5],
and the involvedmultiframe assignment problem is typi-
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cally solved using Lagrangian relaxation-based methods
[15]–[17]. Track management (target initiation and ter-
mination) is usually performed using some external pro-
cedures; see, e.g., [18].

RFSs and finite set statistics (FISST) were devel-
oped to provide a systematic methodology for dealing
with MTT problems involving a time-varying number
of targets [6]. The relationship between RFS-based ap-
proaches to MTT and MHT has been discussed in [19]
and [20]. In the RFS formulation of MTT, the multitar-
get filtering density contains the information of the tar-
get states at the current time step. Exact closed-form so-
lutions of RFS-based multitarget Bayes filter are given
by multitarget conjugate priors. The concept of multitar-
get conjugate prior was defined in [21] as “If we start
with the proposed conjugate initial prior, then all sub-
sequent predicted and posterior distributions have the
same form as the initial prior.”

Two well-established MTT conjugate priors for the
standard point target measurement model are the
Poisson multi-Bernoulli mixture (PMBM) [22] based
on unlabeled RFSs and the generalized labeled multi-
Bernoulli (GLMB) [21] based on labeled RFSs. The
PMBM consists of a Poisson distribution representing
targets that are hypothesized to exist but have not been
detected and a multi-Bernoulli mixture (MBM) repre-
senting targets that have been detected at some stage.
The resulting PMBM filter [23] is a computationally
tractable filter for the standard point target dynamic
model, where the birth model is a Poisson RFS. If the
birth process is a multi-Bernoulli RFS, the multitarget
conjugate prior is of the form MBM [23], [24]. A dis-
cussion regarding the differences between the use of a
Poisson birth model and the use of a multi-Bernoulli
birth model can be found in [24].

A. Track Continuity in MTT

In this section, we discuss how track continuity can
be maintained in different MTT methodologies. Vector-
type MTT methods, e.g., the JPDA filter and the MHT,
describe the multitarget states and measurements by
random vectors. They are able to explicitly maintain
track continuity; i.e., they associate a state estimate with
a previous state estimate or declare the appearance of
a new target [10]. For multitarget filters based on un-
labeled RFS, time sequences of tracks cannot be con-
structed easily due to the set representation of the mul-
titarget states that are order independent. The PMBM
filter (as well as the MBM filter) seemingly does not
provide explicit track continuity between time steps,1 al-
though a hypothesis structure in analogy to MHT was
observed in [22] and [23].

1The PMBM filter and the MBM filter are able to maintain track con-
tinuity implicitly, in a practical setting, based on information provided
by metadata.

One approach to addressing the lack of track con-
tinuity is to add unique labels to the target states and
estimate target states from the multitarget filtering den-
sity [21], [25], [26]. This procedure can work well in
some cases, but it becomes problematic in challeng-
ing situations, for example, when target birth is in-
dependent and identically distributed, and when tar-
gets get in close proximity and then separate [27]. The
δ-GLMB filter [28] (and its approximation the labeled
multi-Bernoulli (LMB) filter [29]) is an example of
the resulting labeled filter when the birth model is
an LMB (mixture) RFS. The δ-GLMB density is sim-
ilar in structure to labeled MBM using MBM01 pa-
rameterization [23], in which Bernoulli components
are uniquely labeled, and their existence probability
is restricted to either 0 or 1. It was shown in [23]
that the MBM parameterization has computational
and implementational advantages over the MBM01

parameterization.

B. Trajectory PMBM Filter and Its Relation to MHT

In this section, we give a brief introduction to the
trajectory PMBM filter and discuss its relation to MHT.
More details of the trajectory PMBM filter will be given
in Section III.

Compared to augmenting target states with unique
labels, a more appealing approach to ensuring track con-
tinuity for RFS-based multitarget filters is to generalize
the concept of RFSs of targets to RFSs of trajectories.
The theoretical background to performMTT using RFS
of trajectories was provided in [27] and [30]. Within the
set of trajectories framework, the goal of MTT is to re-
cursively compute the posterior density over the set of
trajectories, which contains full information about the
target trajectories, and can be used to estimate the best
set of trajectories at each time step.

Closed-form PMBM filtering recursions based on
the set of trajectories framework have been derived in
[31], which enables us to leverage on the benefits of the
PMBM filter recursion based on sets of targets, while
also obtaining track continuity.Assuming standard point
target dynamic [32, Sec. 13.2.4] and measurement mod-
els (defined in Section II-A), two different trajectory
PMBM filters were proposed in [31]: one in which the
set of current (i.e., alive) trajectories is tracked, and one
in which the set of all trajectories (dead and alive) up
to the current time step is tracked. In both cases, finite
trajectories, i.e., trajectories of finite length in time, are
considered.

The implementation of the trajectory PMBMfilter in
[31] considers the single-scan data association problem,
and the best global hypotheses are found usingMurthy’s
algorithm [33]. As a complement to [31], an approxi-
mation to the exact trajectory PMBM filter that con-
siders multiscan data association was developed in [34].
It operates by performing track-oriented N-scan prun-
ing [5] to limit computational complexity, and using dual
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decomposition [17] to solve the involved multiframe as-
signment problem. The proposed algorithm therefore
shares some of the key properties of certain TOMHT
algorithms [5], [17],but is derived usingRFSs of trajecto-
ries and birth/death models. As a comparison, TOMHT
algorithms typically use heuristics to take into account
the appearance and disappearance of targets [4, Ch. 7].

Numerical results in [34] show that the proposed
multiscan trajectory PMBM filter has better track-
ing performance than the fast implementation of the
δ-GLMB filter using Gibbs sampling [35] in terms of es-
timation error and computational time. These two fil-
ters use different birth models, Poisson RFS and multi-
Bernoulli RFS, respectively. A multi-Bernoulli birth can
be suitable if one is certain that a known maximum
of targets will enter the area of interest and the tar-
gets appear around some known locations. With multi-
Bernoulli birth, the PMBM conjugate prior becomes an
MBM conjugate prior [23]. An implementation of the
MBM filter for sets of targets was proposed in [24]. The
case in which the probability distribution of the number
of targets is not necessarily Poisson was discussed in [36]
for the batch-processing formulation used for TOMHT;
however, a practical implementation was not provided
in [36].

The data association is explicitly represented in both
the trajectory PMBM filter and the trajectory MBM fil-
ter, in a data structure analogous to TOMHT.Compared
to conventional MHT formalism, as described in [5] and
[14], one important difference is that the presented tra-
jectory PMBM filters include a Poisson RFS that mod-
els undetected trajectories. The modeling of undetected
targets allows for newly discovered targets to have been
born at earlier time steps [20]. Therefore, the trajectory
PMBM filters give a higher effective birth rate than gen-
eral TOMHT. The modeling of undetected targets was
incorporated into TOMHT in [37]. In comparison, in
the trajectory PMBM filters the hypotheses are purely
data-to-data assignments and they are more efficiently
represented using Bernoulli RFSs with probabilistic tar-
get existence.More importantly, in the PMBM trajectory
filters the estimates of the set of trajectories can be di-
rectly extracted from the multitarget densities in addi-
tion to the target current states.

C. Contributions and Organization

This paper is an extension of [34]. In this paper, we
present the trajectory PMBM and the trajectory MBM
filter with multiscan data association. The main novel-
ties of the proposed algorithms, compared to previous
work based on sets of trajectories [27], [31], [38], [39],
are that they consider the multiscan data association
problem.Themain novelties of the proposed algorithms,
compared to TOMHT, are that they produce full trajec-
tory estimates, i.e., smoothed estimates, upon receipt of
each new set of measurements, and that the filters based
on sets of trajectories model the targets that remain to

be detected and the target death subsequent to the final
detection.

The contributions can be summarized as follows:

1) We present the filtering recursions for the trajectory
MBM filter and the trajectory MBM01 filter using a
multi-Bernoulli birth model. Two variants are con-
sidered for each filter: the set of current trajectories
and the set of all trajectories.

2) We show that the ideas from the efficient TOMHT
in [17] can be utilized in trajectory filters based on
PMBM,MBM, and MBM01 conjugate priors, result-
ing in so-called multiscan trajectory filters.

3) We explain how to efficiently perform fixed-lag
smoothing to extract smoothed trajectory estimates
for the presented algorithms.

4) We evaluate the performance of the presented al-
gorithms in a simulation study, in terms of target
state/trajectory estimation error and computational
time.

The paper is organized as follows. In Section II, we
introduce the modeling assumption and background on
sets of trajectories. In Section III, we review the PMBM
conjugate prior on the set of trajectories. In Section IV,
we present the filtering recursion for trajectoryMBMfil-
ter. In SectionV,we present implementations of themul-
tiscan trajectory filters. In Section VI, we present how to
efficiently perform fixed-lag smoothing when extracting
trajectory estimates. Simulation results are presented in
Section VII, and conclusions are drawn in Section VIII.

II. MODELING

In this section, we first outline the modeling assump-
tions utilized in this work. Next, we give a brief intro-
duction to RFSs of trajectories. Then, we introduce the
generalized transition and measurement models in the
framework of set of trajectories; the precise mathemat-
ical definitions can be found in [27]. The modeling is
probabilistic, and the interested reader can find the nec-
essary details about FISST, measure theory, probability
generating functionals (PGFLs), and functional deriva-
tives for sets of trajectories in Appendices A and D.

A. Modeling Assumptions

We assume that for each discrete time k (a non-
negative integer), a continuous time tk is assigned, such
that tk > tk′ for k > k′. In the traditional formula-
tion for RFSs of targets, target states and measurements
are represented in the form of finite sets [6]. A random
single target state xk is a random element of the state
(Euclidean) space X = R

n, and a random measure-
ment zk is a random element of the measurement space
Z = R

m, all at discrete time k. The random set of mea-
surements obtained by a single sensor, including clutter
and target measurements with unknown origin, at time

MULTISCAN IMPLEMENTATION OF THE TRAJECTORY POISSON MULTI-BERNOULLI MIXTURE FILTER 215



step k is denoted as zk ∈ F (Z ), whereF (Z ) denotes the
set of all the finite subsets of Z .

We proceed by introducing two families of RFSs
that will have prominent roles throughout the paper: the
Poisson RFS [6, Sec. 4.3.1] and the Bernoulli RFS [6,
Sec. 4.3.3]. A Poisson RFS � has multi-object density
distribution

f ppp(�) = e− ∫
λ(�)d�

∏
�∈�

λ(�), (1)

where λ(·) is the intensity function and the number of
objects is Poisson distributed. An RFS � is a Bernoulli
RFS if |�| ≤ 1, and a Bernoulli RFS has multi-object
density distribution

f ber(�) =
⎧⎨
⎩
1 − r, � = ∅,

r f (�), � = {�},
0, otherwise,

(2)

where f (·) is a single object probability density and r
is the probability of existence. A multi-Bernoulli RFS is
the union of a finite number of independent Bernoulli
RFSs.

In previous works [27], [31], [38], [39], two differ-
ent birth models have been used. In this paper, we
present multiscan trajectory filter implementations for
both birth models: the Poisson birth model defined in
Assumption 1 and the multi-Bernoulli birth model de-
fined in Assumption 2. The standard point target mea-
surement model is defined in Assumption 3.

Assumption 1. Themultitarget state evolves according to
the following standard dynamic process with a Poisson
birth model:

1) New targets appear in the surveillance area indepen-
dently of any existing targets. Targets arrive at each
time step according to a Poisson RFS with birth in-
tensity λb

k(xk) defined on the target state space X .
2) Given a target with state xk, the target survives with

a probability PS(xk) and moves with a Markov state
transition density π (xk+1|xk) defined on the target
state space X . The state transition density is the den-
sity of the target state at time step k+ 1, given that the
target had state xk at time step k.

Assumption 2. The multitarget state evolves according
to the following modified dynamic process with a multi-
Bernoulli birth model:

1) New targets appear in the surveillance area indepen-
dently of any existing targets. Targets arrive at time
step k according to a multi-Bernoulli RFS, which has
nbk Bernoulli components. The lth Bernoulli compo-
nent has existence probability rb,l

k and state density
f b,l
k (xk) defined on the target state space X .

2) Same as Assumption 1, point 2.

Assumption 3. The multitarget measurement process is
as follows:

1) Each target may give rise to at most one measurement,
and each measurement is the result of at most one tar-
get. The probability of detection of a target with state
xk is PD(xk), and the single measurement density is
f (zk|xk) from the target space X to the measurement
space Z , which is the probability density of the mea-
surement zk, given that there is a target with state xk in
the scene.

2) Clutter measurements arrive according to a Poisson
RFS with intensity λFA(zk) defined on the measure-
ment space Z , independently of targets and target-
oriented measurements.

B. Random Finite Sets of Trajectories

In this section, we first explain how the single trajec-
tory state and its density are defined. Then, we briefly
introduce some basic types of RFSs of trajectories.

1) Trajectory State: We use the trajectory state model
presented in [27] and [30], in which the trajectory state
is a tuple

X = (β, ε, xβ:ε), (3)

where β is the discrete time of the trajectory birth, i.e.,
the time the trajectory begins; ε is the discrete time of
the trajectory’s end time. If k is the current time, ε = k
means that the trajectory is alive; xβ:ε is, given β and ε,
the (finite) sequence of states

xβ:ε = (xβ, xβ+1, . . . , xε−1, xε), (4)

where xκ ∈ X for all κ ∈ {β, . . . , ε}. This gives a trajec-
tory of length l = ε − β + 1 time steps.

The single trajectory state can be considered a hybrid
state consisting of discrete states β and ε representing
the start and end time indices, and a continuous state xβ:ε

that evolves according to a stochastic model dependent
on the discrete states.2 The trajectory state space at time
step k is [27]

Tk = �(β,ε)∈Ik{β} × {ε} × X ε−β+1, (5)

where � denotes the union of (possibly empty) sets that
are mutually disjoint, Ik = {(β, ε) : 0 ≤ β ≤ ε ≤ k} is the
set of all possible start and end times of trajectories up
to time step k, andX l denotes l Cartesian products ofX ,
i.e., the Cartesian products of spaces of different sizes.A
trajectory state density p(·) of X factorizes as follows:

p(X ) = p(xβ:ε|β, ε)P(β, ε), (6)

where, if ε < β, then P(β, ε) is zero. Integration for sin-
gle trajectory densities is performed as follows [27]:

2We remark that the use of such a hybrid state, i.e., a combination of
one (or more) discrete state and one (or more) continuous state, is
not uncommon in MTT: a typical example is the interacting multiple
model [40], in which the identification of multiple models, which can
be of different dimensionality [41], is governed by a discrete stochastic
process.

216 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 2 DECEMBER 2019



∫
p(X )dX

=
∑

(β,ε)∈Ik

[∫
· · ·
∫

p(xβ:ε|β, ε)dxβ · · ·dxε

]
P(β, ε).

(7)

2) Sets of Trajectories: A set of trajectories is denoted
as Xk ∈ F (Tk), where F (Tk) is the set of all the finite
subsets of Tk. Let g(Xk) be a real-valued function on a
set of trajectories, then the set integral is

∫
g(Xk)δXk

� g(∅)+
∞∑
n=1

1
n!

∫
· · ·
∫
g
({
X 1
k , . . . ,Xn

k

})
dX 1

k · · ·dXn
k .

(8)

A trajectory Poisson RFS has (multitrajectory) density
of the form (1), where the trajectory Poisson RFS inten-
sity λ(·) is defined on the trajectory state space Tk; i.e., re-
alizations of the PoissonRFS are trajectories with a birth
time,a time of themost recent state,and a state sequence
[38]. A trajectory Bernoulli RFS has density of the form
(2), where f (·) is a single trajectory density (6). Trajec-
tory multi-Bernoulli RFS and trajectory MBM RFS are
both defined analogously to target multi-Bernoulli RFS
and target MBM RFS [27]: a trajectory multi-Bernoulli
is the disjoint union of a multiple trajectory Bernoulli
RFS; trajectory MBM RFS is an RFS whose density is a
mixture of trajectory multi-Bernoulli densities.

C. Transition Models for Sets of Trajectories

In the standard multitarget dynamic model with
Poisson birth (see Assumption 1), target birth at time
step k is modeled by a Poisson RFS, with intensity

λB
k (X ) = λB,x

k (xβ:ε|β, ε)	k(ε)	k(β), (9a)

λB,x
k (xk:k|k,k) = λb

k(xk), (9b)

where 	(·) denotes the Kronecker delta function. In
the modified multitarget dynamic model with multi-
Bernoulli birth (see Assumption 2), target birth at time
step k is modeled by a multi-Bernoulli RFS,with the tra-
jectory state density in the lth Bernoulli component

fB,l
k (X ) = fB,l,x

k (xβ:ε|β, ε)	k(ε)	k(β), (10a)

fB,l,x
k (xk:k|k,k) = f b,l

k (xk), (10b)

and the existence probability rb,l
k .

We focus on two different MTT problem formula-
tions: the set of current trajectories, where the objec-
tive is to estimate the trajectories of targets that are still
present in the surveillance area at the current time, and
the set of all trajectories, where the objective is to es-
timate the trajectories of both the targets that are still
present in the surveillance area at the current time and

the targets that once were in (but have since left) the
surveillance area at some previous time. The probability
of survival as a function on trajectories at time step k is
defined as

PS
k (X ) = PS(xε)	k(ε). (11)

The transition density for the trajectories depends on the
problem formulation.

1) Transition Model for the Set of Current Trajectories:
The Bernoulli RFS transition density for a single poten-
tial target without birth is

f ck|k−1(X|X′)

=

⎧⎪⎪⎨
⎪⎪⎩
1, X′ = ∅,X = ∅,

1 − PS
k−1(X

′), X′ = {X ′},X = ∅,

PS
k−1(X

′)π c(X |X ′), X′ = {X ′},X = {X },
0, otherwise,

(12a)

π c(X |X ′) = π c,x(xβ:ε|β, ε,X ′)	ε′+1(ε)	β ′ (β), (12b)

π c,x(xβ:ε|β, ε,X ′) = πx(xε|x′
ε′ )δx′

β′ :ε′
(xβ:ε−1), (12c)

where δ(·) denotes Dirac delta function and X ′ denotes
the single trajectory state at time step k−1. In thismodel,
PS(·) is used as follows. If the target disappears,or “dies,”
then the entire trajectory will no longer be a member of
the set of current trajectories. If the trajectory survives,
then the trajectory is extended by one time step.

2) Transition Model for the Set of All Trajectories: The
Bernoulli RFS transition density for a single potential
target without birth is

f ak|k−1(X|X′)

=
⎧⎨
⎩
1, X′ = ∅,X = ∅,

πa(X |X ′), X′ = {X ′},X = {X },
0, otherwise,

(13a)

πa(X |X ′) = πa,x(xβ:ε|β, ε,X ′)πε(ε|β,X ′)	β ′ (β),
(13b)

πε(ε|β,X ′) =

⎧⎪⎪⎨
⎪⎪⎩
1, ε = ε′ < k− 1,
1 − PS

k−1(X
′), ε = ε′ = k− 1,

PS
k−1(X

′), ε = ε′ + 1 = k,
0, otherwise,

(13c)

πa,x(xβ:ε|β, ε,X ′)

=
{

δx′
β′ :ε′

(xβ:ε), ε = ε′,
πx(xε|x′

ε′ )δx′
β′ :ε′

(xβ:ε−1), ε = ε′ + 1. (13d)

In this model, the interpretation of the probability of
survival is that it governs whether the trajectory ends or
it is extended by one more time step. However, impor-
tantly, regardless of whether or not the trajectory ends,
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the trajectory remains in the set of all trajectories with
probability one.

The complete transition model for sets of trajecto-
ries is analogous to the complete transition model for
sets of targets, by using sets of trajectories and the corre-
sponding Bernoulli transition density for each problem
formulation. Given the set Xk−1 = {X 1

k−1, . . . ,X
n
k−1} of

trajectories at time step k−1, the setXk of trajectories at
time step k isXk = Xb

k�X1
k�· · ·�Xn

k,whereX
b
k,X

1
k, ...,X

n
k

are independent sets,Xb
k is the set of newborn trajecto-

ries, andXi
k is the set of trajectories resulting fromXi

k−1.
Using the convolution formula formulti-object densities
[6, eq. (4.17)], the resulting multitrajectory density f (·|·)
of Xk given Xk−1 can be written as

f (Xk|Xk−1) =
∑

Xb
k�X1

k�···�Xn
k=Xk

f birthk (Xb
k)

×
n∏
i=1

f persistk|k−1 (X
i
k|{Xi

k−1}), (14)

where f birthk (·) is either a trajectory Poisson RFS or
a trajectory multi-Bernoulli RFS, and f persistk|k−1 (·|·) is a
Bernoulli transition density for a single potential target
without birth, with the form f ak|k−1(·|·) or f ck|k−1(·|·).

D. Single Trajectory Measurement Model

According to the point target measurement model
in Assumption 3, the multi-object density of a target-
generated measurement at time step k given a set of tra-
jectories with 0 or 1 element is Bernoulli, with the form

ϕk(wk|X)

=

⎧⎪⎪⎨
⎪⎪⎩
1, X = ∅,wk = ∅,

1 − PD
k (X ), X = {X },wk = ∅,

PD
k (X )ϕ(zk|X ), X = {X },wk = {zk},

0, otherwise,

(15a)

PD
k (X ) = PD(xε)	k(ε), (15b)

ϕ(z|X ) = f (z|xε). (15c)

Note that trajectories that do not exist at the cur-
rent time cannot be detected. The complete measure-
ment model for sets of trajectories is similar to the mea-
surement model for sets of targets by using the proper
probability of detection and single measurement density
for trajectories [27].Given the setXk = {X 1

k , . . . ,Xn
k } of

trajectories at time step k, the set zk of measurements
at time step k is zk = wc

k � w1
k � · · · � wn

k, where wc
k,

w1
k, ..., w

n
k are independent sets, wc

k is the set of clut-
ter measurements, and wi

k is the set of measurements
produced by trajectory i. The resulting measurement set
density f (·|·) of zk given Xk can be written as

f (zk|Xk) =
∑

wc
k�w1

k�···�wn
k=zk

f pppk

(
wc
k

) n∏
i

ϕk
(
wi
k

∣∣{Xi
k

})
.

(16)

III. TRAJECTORY PMBM FILTER

The PMBM conjugate prior was developed for point
targets in [22] and for extended targets in [42], and it was
further generalized to trajectories in [31] and [43].Given
the sequence of measurements up to time step k′ and
Assumptions 1 and 3, the density of the set of trajectories
at time step k ∈ {k′,k′+1} is given by the PMBMdensity
of the form

fk|k′ (Xk) =
∑

Xu
k�Xd

k=X

f pppk|k′
(
Xu
k

) ∑
a∈Ak|k′

wa
k|k′ f ak|k′

(
Xd
k

)
, (17a)

f pppk|k′
(
Xu
k

) = e− ∫
λu
k|k′ (X )dX

∏
X∈Xu

k

λu
k|k′ (X ), (17b)

f ak|k′
(
Xd
k

) =
∑

�i∈Tk|k′ X
i
k=Xd

k

∏
i∈Tk|k′

f i,a
i

k|k′
(
Xi
k

)
, (17c)

where the RFS of trajectories Xk is an independent
union of a Poisson RFS Xu

k with intensity λu
k|k′ and

an MBM RFS Xd
k with Bernoulli parameters ri,a

i

k|k′ and

f i,a
i

k|k′ (·), cf. (2), and Ak|k′ is the set of all global hypothe-
ses, which will be explained in the next section.A trajec-
tory PMBM RFS can be defined by the parameters of
the density,

λu
k|k′,Ak|k′ ,

{
�a
k|k′
}
a∈Ak|k′

, (18a)

�a
k|k′ = {(

wi,ai

k|k′, r
i,ai

k|k′ , f
i,ai

k|k′
)}

i∈T
. (18b)

A. Structure of the Trajectory PMBM Filter

The structure of the trajectory PMBM (17) is in anal-
ogy to the structure of the target PMBM [22]. The Pois-
son RFS represents trajectories that are hypothesized
to exist, but have never been detected; i.e., no mea-
surement has been associated with them. In the track-
oriented trajectory PMBM filter, a new track is initiated
for each measurement received. In the MBM in (17),
Tk|k′ = {1, . . . ,nk|k′ } is a track table with nk|k′ tracks,
a = (a1, . . . , ank|k′ ) ∈ Ak|k′ is a possible global data as-
sociation hypothesis, and for each global hypothesis a
and for each track i ∈ Tk|k′ , ai indicates which track hy-
pothesis is used in the global hypothesis. For each track,
there are hik|k′ single trajectory hypotheses.3 The weight

of global hypothesis a iswa
k|k′ ∝ ∏

i∈Tk|k′
wi,ai

k|k′ , where wi,ai

k|k′

is the weight of single trajectory hypothesis ai from track
i.

Letmk be the number of measurements at time step
k ∈ {1, . . . , τ } and j ∈ Mk = {1, . . . ,mk} be an index
to each measurement. LetMk denote the set of all mea-
surement indices up to and including time step k; the el-
ements ofMk, if not empty, are of the form (τ, j), where

3The “track” defined here is different from the convention used in
MHT algorithms, where “track” is referred to as single trajectory hy-
pothesis.
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j ∈ {1, . . . ,mτ } is an index of ameasurement at time step
τ ≤ k. Further, let Mk(i, ai) denote the history of mea-
surements that are hypothesized to belong to hypothesis
ai from track i at time step k. Under the standard point
targetmeasurementmodel assumption (seeAssumption
3), there can be at maximum one measurement corre-
sponding to the same time step inMk(i, ai).

For a global hypothesis to be correct, we have the
following constraints. Each global hypothesis should ex-
plain the association of each measurement received so
far. In addition, every measurement should be associ-
ated with one and only one track in each global hy-
pothesis. In other words, the single trajectory hypothe-
ses included in a given global hypothesis cannot have
any shared measurement. Under these constraints, the
set of global hypotheses at time step k can be expressed
as

Ak|k′ =
{
a = (a1, . . . , ank|k′ )

∣∣∣∣∣
⋃
i∈Tk|k′

Mk(i, ai) = Mk,

Mk(i, ai) ∩ Mk( j, a j) = ∅ ∀i �= j, i, j ∈ Tk|k′

}
.

(19)

B. PMBM Filtering Recursion

The form of the PMBMconjugate prior on the sets of
trajectories is preserved through prediction and update.
The two different trajectory PMBM filters based on the
two different transitionmodels for sets of trajectories are
both track-oriented. For each track, there is a hypoth-
esis tree, where each hypothesis corresponds to differ-
ent data association sequences for the track. The predic-
tion step preserves the number of tracks and the num-
ber of hypotheses. By using a Poisson RFS birth model,
the density of newborn trajectories λB

k (Xk) can be easily
incorporated into the predicted density of Poisson dis-
tributed trajectories λu

k|k−1(Xk) that have never been de-
tected. The two different trajectory PMBM filters have
different prediction steps; the difference is that whether
dead trajectories are still maintained in the set of trajec-
tories. In the update step, a potential new track is initi-
ated for each measurement, and additional hypotheses
are created due to data association. The two different
trajectory PMBM filters have the same update step. Ex-
plicit expressions for how the PMBM parameters (18)
are predicted and updated, using the two different prob-
lem formulations, can be found in [31]; they are omitted
here.

IV. TRAJECTORY MBM FILTER

It is shown in [23] that the MBM RFS of targets
is a multitarget conjugate prior if the birth model is a
multi-Bernoulli RFS, as in Assumption 2. In this section,
we extend this result to RFS of trajectories. Given the

sequence of measurements up to time step k′ and As-
sumptions 2 and 3, the density of the set of trajectories
at time step k ∈ {k′,k′ + 1} is given by the MBM of the
form

fk|k′ (Xk) =
∑

a∈Ak|k′

wa
k|k′

∑
�i∈Tk|k′ X

i
k=Xk

∏
i∈Tk|k′

f i,a
i

k|k′
(
Xi
k

)
, (20)

where the MBM RFS Xk has Bernoulli parameters ri,a
i

k|k′

and f i,a
i

k|k′ (·), cf. (2). A trajectory MBM RFS can be de-
fined by the parameters of the density

Ak|k′,
{
�a
k|k′
}
a∈Ak|k′

, (21a)

�a
k|k′ = {(

wi,ai

k|k′, r
i,ai

k|k′ , f
i,ai

k|k′
)}

i∈T
. (21b)

A. Structure of the Trajectory MBM Filter

The structure of the trajectory MBM is similar to
the MBM maintained in the trajectory PMBM. The dif-
ference lies in how tracks (i.e., Bernoulli components)
are initiated. In the trajectory PMBM filter, a new track
is initiated for each measurement, whereas in the tra-
jectory MBM filter, a new track is initiated for each
Bernoulli component in themulti-Bernoulli birthmodel;
i.e.,MBMhypotheses explicitly enumerate potential tar-
gets that remain to be detected. Both the trajectory
PMBM filter and the trajectory MBM filter can explic-
itly represent trajectories that remain to be detected.
In the PMBM representation, these trajectories are ef-
ficiently represented through the trajectory Poisson in-
tensity λu

k|k′ (·),whereas in theMBMrepresentation, they
are split across many single trajectory hypotheses (tra-
jectory Bernoulli RFSs) with empty measurement asso-
ciation history, i.e.,Mk(i, ai) = ∅.

In each global hypothesis a ∈ Ak|k, each measure-
ment, at each time step, is associated with at most one
track, and each track is associated with at most one mea-
surement. Measurements that are not associated with
any tracks in a global hypothesis are considered to be
clutter under this global hypothesis. Tracks that are not
associated with any measurements in a global hypoth-
esis are considered to be misdetected under this global
hypothesis.Under these constraints, the set of global hy-
potheses at time step k can be expressed as

Ak|k′ =
{
a = (a1, . . . , ank|k′ )

∣∣∣∣ ⋃
i∈Tk|k′

Mk(i, ai) ⊆ Mk,

Mk(i, ai) ∩ Mk( j, a j) = ∅ ∀i �= j, i, j ∈ Tk|k′

}
. (22)

Compared to (19),hereMk\
⋃

i∈Tk|k′
Mk(i, ai) consists of

indices of measurements received so far that are clutter
under global hypothesis a ∈ Ak|k′ . This is an important
difference from the trajectory PMBM filter, in which the
question whether a measurement corresponds to clut-
ter, or to the initialization of a new target trajectory, is
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captured by the existence probability of the created tra-
jectory Bernoulli RFS.

In the rest of the section, we present the predic-
tion and update steps for recursively computing (20)
for theMBM parameterization. Similar to the trajectory
PMBM filter, the two different trajectory MBM filters,
based on the set of current trajectories formulation and
the set of all trajectories formulation, have the same up-
date step. For compactness, we denote the inner product
of two functions h(·) and g(·) as 〈h; g〉 = ∫

h(x)g(x)dx.

B. MBM Filtering Recursion

We first present the prediction steps, respectively, for
the two different problem formulations, and then we
present the update step.

1) Prediction Step for the Set of Current Trajectories:
The prediction step is given in the following theorem.

Theorem 1. Assume that the distribution from the previ-
ous time step fk−1|k−1(Xk−1) is given by (20), that the tran-
sitionmodel is (12),and that the birthmodel is a trajectory
multi-Bernoulli RFS with nbk Bernoulli components, each
of which has density of the form (10). Then, the predicted
distribution for the next step fk|k−1(Xk) is given by (20),
with nk|k−1 = nk−1|k−1 + nbk. For tracks continuing from
previous time (i ∈ {1, . . . ,nk−1|k−1}), the parameters of
the MBM are

hik|k−1 = hik−1|k−1, (23a)

wi,ai

k|k−1 = wi,ai

k−1|k−1 ∀ai, (23b)

ri,a
i

k|k−1 = ri,a
i

k−1|k−1

〈
f i,a

i

k−1|k−1;PS
k−1

〉 ∀ai, (23c)

f i,a
i

k|k−1(X ) =
〈
f i,a

i

k−1|k−1;π cPS
k−1

〉
〈
f i,a

i

k−1|k−1;PS
k−1

〉 ∀ai. (23d)

For new tracks (i ∈ {nk−1|k−1 + l}, l ∈ {1, . . . ,nbk}), the
parameters of the MBM are

hik|k−1 = 1, (24a)

Mk−1(i, 1) = ∅, (24b)

wi,1
k|k−1 = 1, (24c)

ri,1k|k−1 = rb,l
k , (24d)

f i,1k|k−1(X ) = f
B,l
k (X ). (24e)

2) Prediction Step for the Set of All Trajectories: The
prediction step is given in the following theorem.

Theorem 2. Assume that the distribution from the previ-
ous time step fk−1|k−1(Xk−1) is given by (20), that the tran-
sitionmodel is (13),and that the birthmodel is a trajectory
multi-Bernoulli RFS with nbk Bernoulli components, each
of which has density given by (10). Then, the predicted
distribution for the next step fk|k−1(Xk) is given by (20),
with nk|k−1 = nk−1|k−1 + nbk. For tracks continuing from

previous time (i ∈ {1, . . . ,nk−1|k−1}), the parameters of
the MBM are

hik|k−1 = hik−1|k−1, (25a)

wi,ai

k|k−1 = wi,ai

k−1|k−1 ∀ai, (25b)

ri,a
i

k|k−1 = ri,a
i

k−1|k−1 ∀ai, (25c)

f i,a
i

k|k−1(X ) = 〈
f i,a

i

k−1|k−1;πa〉 ∀ai. (25d)

For new tracks (i ∈ {nk−1|k−1 + l}, l ∈ {1, . . . ,nbk}), the
parameters of the MBM are the same as (24).

3) Update Step: The update step is given in the follow-
ing theorem.

Theorem 3. Assume that the predicted distribution
fk|k−1(Xk) is given by (20), that the measurement model
is (15), and that the measurement set at time step k is zk =
{z1k, . . . , zmk

k }. Then, the updated distribution fk|k(Xk) is
given by (20), with nk|k = nk|k−1. For each track (i ∈
{1, . . . ,nk|k}), a hypothesis is included for each combi-
nation of a hypothesis from a previous time and either
a misdetection or an update using one of the mk new
measurements, such that the number of hypotheses be-
comes hik|k = hik|k−1(1+mk). Formisdetection hypotheses
(i ∈ {1, . . . ,nk|k}, ai ∈ {1, . . . ,hk|k−1}), the parameters of
the MBM are

Mk(i, ai) = Mk−1(i, ai), (26a)

wi,ai

k|k = wi,ai

k|k−1

(
1 − ri,a

i

k|k−1

〈
f i,a

i

k|k−1;PD〉), (26b)

ri,a
i

k|k =
ri,a

i

k|k−1

〈
f i,a

i

k|k−1; 1 − PD
〉

1 − ri,a
i

k|k−1

〈
f i,a

i

k|k−1;PD
〉 , (26c)

f i,a
i

k|k (X ) =
(1 − PD

k (X )) f i,a
i

k|k−1(X )〈
f i,a

i

k|k−1; 1 − PD
〉 . (26d)

For hypotheses updating tracks (i ∈ {1, . . . ,nk|k}, ai =
ãi + hik|k−1 j, ã

i ∈ {1, . . . ,hik|k−1}, j ∈ {1, . . . ,mk}, i.e., the
previous hypothesis ãi,updatedwithmeasurement z jk), the
parameters are

Mk(i, ai) = Mk−1(i, ãi) ∪ {(k, j)}, (27a)

wi,ai

k|k =
wi,ai

k|k−1r
i,ãi

k|k−1

〈
f i,ã

i

k|k−1;ϕ
(
z jk
∣∣ · )PD

〉
λFA

(
z jk
) , (27b)

ri,a
i

k|k = 1, (27c)

f i,a
i

k|k (X ) =
ϕ
(
z jk
∣∣X )PD

k (X ) f i,ã
i

k|k−1(X )〈
f i,ã

i

k|k−1;ϕ
(
z jk
∣∣ · )PD

k

〉 . (27d)

The derivation here incorporates hypotheses updat-
ing every prior hypothesis with every measurement;
however, in practical implementations, gating can be
used to reduce the computational burden by excluding
hypotheses with negligible weights.
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C. MBM01 Filtering Recursion

The trajectory MBM01 filter can be considered as a
variant of the trajectory MBM filter, in which existence
probabilities of Bernoulli components are either 0 or 1.
TheMBM01 filtering recursion can be obtained from the
MBM filtering recursions by expanding the MBM into
its MBM01 equivalent [23]. The filtering recursions for
the trajectory MBM01 filter are given in Appendix C.

D. Discussion

All the trajectory filters presented above are track-
oriented. For each Bernoulli component in the multi-
Bernoulli birth density, a new track is initiated. Com-
pared to the trajectory PMBM filter with Poisson RFS
birth, tracks are created in the prediction step but not the
update step of trajectory MBM/MBM01 filter. In the tra-
jectory MBM/MBM01 filter for the set of all trajectories,
the predictions (25d) and (66c) result in additional mix-
ture component in Bernoulli densities f i,a

i

k|k′ (Xk), which
are of the form

p(X ) =
∑
j

w j pj(xβ:ε|β, ε)	e j (ε)	bj (β), (28)

where each mixture component is characterized by a
weight w j, a distinct birth time bj, a distinct most re-
cent time e j where bj ≤ e j for all j,4 and a state
sequence density pj(·). This type of state density fa-
cilitates simple representations for the state sequence
xβ:ε (either the state of a trajectory that is still present
or the state of a dead trajectory), conditioned on β

and ε.
The prediction steps, given by Theorems 5 and 6,

in the trajectory MBM01 filter, create more single tra-
jectory hypotheses than the prediction steps, given by
Theorems 1 and 2, in the trajectory MBM filter; this
is a direct result of restricting the existence probabil-
ity of Bernoulli components to either 0 or 1. The exis-
tence probability of trajectory Bernoulli RFS r has dif-
ferent meanings in the four different trajectory filters:
in the trajectory MBM filter for the set of current tra-
jectories, r is the probability that the trajectory exists at
the current time and has not ended yet; in the trajec-
tory MBM filter for the set of all trajectories, r repre-
sents the probability that the trajectory existed at any
time before including the current time; in the trajectory
MBM01 filter for the set of current trajectories, r indi-
cates whether the trajectory exists at the current time
and has not ended yet; in the trajectory MBM01 filter for
the set of all trajectories, r indicates whether the trajec-
tory existed at any time before and including the current
time.

We remark that the labeled trajectory MBM and
MBM01 filters, which are defined over the set of labeled

4Neither the birth time β nor the most recent time ε is deterministic.

trajectories, can be obtained by augmenting label to sin-
gle target state x [27, Sec. IV-A]. This does not affect the
filtering recursion or the information in the computed
posterior, compared to MBM and MBM01. Therefore,
the correspondingmultiscan implementations in Section
V are analogous.

V. IMPLEMENTATION OF MULTISCAN TRAJECTORY
FILTERS

In this section, we present efficient multiscan imple-
mentations of the above trajectory filters.

A. Hypothesis Reduction

The hypothesis reduction techniques for the trajec-
tory PMBM, MBM, and MBM01 are quite similar, so
we first explain the general formulation and then high-
light the differences. As a first step, we identify the most
probable global hypothesis, from which estimates of tra-
jectories are also typically extracted. Conditioning on
the most likely global hypothesis, we make use of track-
oriented N-scan pruning [5], a conventional hypothesis
reduction technique used in TOMHT, to prune global
hypotheses with negligible weights.

We note that hypothesis reduction is not compli-
cated by the fact that we are working with symmetric
(unlabeled) distributions. Specifically, in (20), the quan-
tities stored are the weight of hypothesis a, i.e., wa

k|k′ ,
and the hypothesis-conditioned trajectory distributions
f i,a

i

k|k′ (Xi
k) for each target. Symmetry is ensured by the

sum over �i∈Tk|k′X
i
k = Xk; this sum is implicit, and terms

never need to be explicitly represented. Therefore, hy-
pothesis reduction achieved by either setting wa

k|k′ = 0
for some subset of hypotheses (and renormalizing the
weights of remaining hypotheses to sum to 1) or remov-
ing a subset of multi-Bernoulli components f i,a

i

k|k′ (Xi
k)

for some hypotheses always results in valid symmetric
distributions. Likewise, if the existence probability of a
Bernoulli component is close to zero in all the consid-
ered global hypotheses, pruning is equivalent to setting
this existence probability equal to zero, which does not
affect the symmetry of the posterior.

Given the most likely global hypothesis a∗ at cur-
rent time step k, we trace the single trajectory hypothe-
ses included in a∗ back to their local hypotheses at time
step k − N. The assumption behind the N-scan pruning
method is that the data association ambiguity is resolved
before scan k−N [5]. In other words, global hypotheses
that do not coincide with a∗ up until and including time
step k − N + 1 are assumed to have negligible weights;
these global hypotheses can then be pruned. In addition,
tracks (local hypothesis trees) that, after pruning, have a
single nonexistence local hypothesis, i.e., r = 0, can be
pruned. In what follows, we show that the most likely
global hypothesis a∗ can be obtained as the solution of a
multiframe assignment problem.
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B. Data Association Modeling and Problem Formulation

As indicated in the previous section, the posterior
global hypothesis probability wa

k|k is proportional to the
product of the weights of different single trajectory hy-
potheses wi,ai

k|k, one from each track:

wa
k|k ∝

∏
i∈Tk|k

wi,ai

k|k, (29)

where the proportionality denotes that normalization is
required to ensure that

∑
a∈Ak|k wa

k|k = 1. Omitting time
indices and introducing the notation ca = − log(wa) and
ci,a

i = − log(wi,ai ) yields

ca =
∑
i∈T

ci,a
i +C, (30)

whereC is the logarithmof the normalization constant in
(29). The most likely global hypothesis is the collection
of single trajectory hypotheses that minimizes the total
cost, i.e.,

a∗ = argmin
(ai)∈A

∑
i∈T

ci,a
i
. (31)

Let Hi denote the set of single trajectory hypothe-
ses for the ith track, and let Mτ denote the set of mea-
surement indices at time step τ . Further, let ρ i,a

i ∈ {0, 1}
be a binary indicator variable, indicating whether single
trajectory hypothesis ai in the ith track is included in a
global hypothesis or not, and let

ρ = {ρ i,ai ∈ {0, 1}|ai ∈ Hi ∀i ∈ T} (32)

be the set of all binary indicator variables. The mini-
mization problem (31) can be further posed as a mul-
tiframe assignment problem by decomposing the con-
straint (ai) ∈ A into a set of smaller constraints [17, Sec.
III], in the form of

argmin
ρ∈⋂k

τ=0 Pτ

∑
i∈T

∑
ai∈Hi

ci,a
i
ρ i,a

i
, (33)

with the constraint sets denoted as

P0 =
{

ρ

∣∣∣∣∣
∑
ai∈Hi

ρ i,a
i = 1, ∀i ∈ T

}
, (34a)

Pτ =

⎧⎪⎪⎨
⎪⎪⎩ρ

∣∣∣∣∣
∑
i∈T

∑
ai∈Hi:

(τ, j)∈M(i,ai)

ρ i,a
i ≤ 1, ∀ j ∈ Mτ

⎫⎪⎪⎬
⎪⎪⎭ , (34b)

where k is the current time step and τ = 1, . . . ,k. The
first constraint (34a) enforces that each global hypothe-
sis should include one and only one single trajectory hy-
pothesis from each track. The set of k constraints (34b)
differs in the trajectory PMBM filter and the trajectory
MBM/MBM01 filter. In the trajectory PMBM filter, each
measurement from each time should be associated with
exactly one track, i.e., the ≤ sign becomes an = sign
in (34b), whereas in the trajectory MBM/MBM01 filter,

each measurement from each time should be associated
with at most one track, which explains the ≤ sign.

C. Multiframe Assignment via Dual Decomposition

The multidimensional assignment problem (33) is
NP-hard for two or more scans of measurements. An ef-
fective approach to solving this problem is Lagrangian
relaxation; this technique has been widely used to solve
themultiscan data association problem inTOMHTalgo-
rithms; see, e.g., [15] and [16]. In this work, we focus on
the dual decomposition formulation [44], i.e., a special
case of Lagrangian relaxation, whose competitive per-
formance, compared to traditional approaches [15], [16],
in solving the multiframe assignment problem has been
demonstrated in [17].

1) Decomposition of the Lagrangian Dual: We follow
similar implementation steps as in [17].The original (pri-
mal) problem (33) is separated into k subproblems, one
for each time step, and for each subproblem a binary
variable is used. The subproblem solutions

ρτ = {ρ i,aiτ ∈ {0, 1}|ai ∈ Hi ∀i ∈ T} (35)

must be equal for all τ ; this is enforced through Lagrange
multipliers that are incorporated into the subproblems
acting as penalty weights. The τ th subproblem can be
written as [17]

argmin
ρτ ∈P0∩Pτ

∑
i∈T

∑
ai∈Hi

(
ci,a

i

k
+ δi,a

i

τ

)
ρ i,a

i

τ

� argmin
ρτ ∈P0∩Pτ

S(ρτ , δτ ), (36)

where the Lagrange multipliers used for the τ th sub-
problem are denoted by

δτ = {
δi,a

i

τ

∣∣ai ∈ Hi ∀i ∈ T
}
, (37)

and the division by k in (36) comes from the fact that the
summation of the objectives that each subproblem tries
to minimize should be equal to the objective of the orig-
inal problem. The Lagrange multipliers δi,a

i

τ ∈ R have
the constraint that, for each single trajectory hypothe-
sis, they must add up to zero over different subproblems
[44]. Thus, the set of Lagrange multipliers has the form

� =
{

δτ

∣∣∣∣∣
k∑

τ=1

δi,a
i

τ = 0, ∀ai ∈ Hi ∀i ∈ T

}
. (38)

2) Subproblem Solving: After eliminating all the con-
straint sets except two, i.e., P0 and Pτ , we obtain a 2D
assignment problem (36). The objective of the τ th as-
signment problem (36) is to associate eachmeasurement
received at time step τ ≤ k, i.e., j ∈ Mτ , with either
an existing track or a new track5 at the current time

5In the trajectory MBM/MBM01, “dummy” tracks are created to rep-
resent clutter.
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step k, i.e., i ∈ Tk, such that the total assignment cost is
minimized.

For a track that is created after time step τ , no mea-
surement from time step τ should be assigned to it; there-
fore, the measurement-to-track assignment cost is infin-
ity. For a track that existed before and up to time step τ ,
i.e., i ∈ Tτ , if measurement z jτ was not associated with
this track, let the measurement-to-track assignment cost
be infinity; if otherwise, let the cost first be the minimum
cost of the single trajectory hypothesis in this track that
was updated by z jτ [45, Ch. VII, eq. (7.24)], i.e.,

min
∑
ai∈Hi:

(τ, j)∈M(i,ai)

(
ci,a

i

k
+ δi,a

i

τ

)
. (39)

In order to keep the cost of a hypothesis that does not
assign a measurement to a track the same for an existing
track and a new track (trajectory PMBMfilter) or clutter
(trajectory MBM filter), the cost (39) should then have
subtracted from it the minimum cost of hypotheses that
this track is not updated by any of the measurements at
time step τ , i.e.,

min
∑
ai∈Hi:

(τ, j)/∈M(i,ai), ∀ j∈Mτ

(
ci,a

i

k
+ δi,a

i

τ

)
. (40)

Note that, in the context of Lagrangian relaxation, the
costs of single trajectory hypotheses refer to the costs
that are penalized by the Lagrange multipliers.

After solving the 2D assignment problem, we can
obtain the associations for each measurement at time
step τ . For tracks not being associated with any mea-
surements at time step τ , if the track is created before
and up to time step τ , i.e., i ∈ Tτ , the single trajectory
hypothesis

argmin
ai

∑
ai∈Hi:

(τ, j)/∈M(i,ai), ∀ j∈Mτ

(
ci,a

i

k
+ δi,a

i

τ

)
(41)

is included in the most likely global hypothesis; if other-
wise, i.e., i ∈ Tk \ Tτ , we can choose the single trajectory
hypothesis

argmin
ai

∑
ai∈Hi

(
ci,a

i

k
+ δi,a

i

τ

)
(42)

to be included in the most likely global hypothesis.

3) Subgradient Updates: The objective of Lagrangian
relaxation is to find the tightest lower bound of the sum-
mation of the cost of each subproblem (36). The dual
problem can be expressed as [17]

argmax
{δτ }∈�

(
k∑

τ=1

min
ρτ ∈P0∩Pτ

S(ρτ , δτ )

)
, (43)

where the maximum can be found using subgradient
methods [46]. The Lagrange multipliers {δτ } are updated
using

δi,a
i

τ = δi,a
i

τ + αt · gi,aiτ , (44)

where gi,a
i

τ is the projected subgradient that can be cal-
culated as

gi,a
i

τ = ρ i,a
i

τ − 1
k

k∑
τ ′=1

ρ i,a
i

τ ′ , (45)

and αt is the step size at iteration t. There are many rules
to set the step size; see [44]. In this work, we choose to
use the same setting as in [17], which has the form

αt = CBP
t −CD

t

‖{gτ }‖2 , (46)

whereCBP
t is the best (minimum) feasible primal cost so

far obtained,CD
t is the dual cost calculated at iteration t

from (43), and {gτ } denotes the concatenation of all the
projected subgradients gi,a

i

τ . The optimal solution is as-
sumed to be attained when the relative gap between the
primal cost and the dual cost (CBP

t −CD
t )/CBP

t is less than
a specified threshold, e.g., 0.01 [44].

Each subproblem solution will, in general, be infea-
sible with respect to the primal problem (33); neverthe-
less, subproblem solutions will usually be nearly feasi-
ble since large constraint violations were penalized [44].
Hence, feasible solutions ρ can be obtained by correct-
ing the minor conflicting binary elements on which sub-
problem solutions ρτ disagree. For tracks for which we
have not yet selected which single trajectory hypothe-
sis to be included in the most likely global hypothesis,
we use the branch and bound technique [47] to recon-
struct the best feasible solution at each iteration of the
Lagrangian relaxation. Note that there are many other
ways to recover a feasible primal solution from subprob-
lem solutions; see [44].

D. Discussion

The objective of solving the multiframe assignment
problem is to know which Bernoulli components are in-
cluded in the multi-Bernoulli with the highest weight.
Because the data association ambiguity is assumed to
be resolved before time step k − N, obtaining the most
likely global hypothesis at time step k, which explains
the origin of each measurement from time step k−N to
current time step k, requires the solution of an (N + 2)-
dimensional assignment problem [5].

The computational complexity of filters can be fur-
ther reduced by limiting the number of single target/
trajectory hypotheses; see [23] and [31]. As for the mul-
tiscan trajectory PMBM and MBM filters, pruning sin-
gle trajectory hypotheses with small existence proba-
bilities besides N-scan pruning might sometimes harm
the solvability of the multiframe assignment problem,
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since the problem is formulated using the measure-
ment assignment information contained in single trajec-
tory hypotheses. Instead,we can choose single trajectory
hypotheses ai ∈ Hi, ∀i ∈ T, with small Bernoulli
existence probability r at current time step to be up-
dated only by misdetection at next time step. Then, sin-
gle trajectory hypotheses with several consecutive mis-
detections can be pruned using N-scan pruning. Also, to
limit the number of mixture components in the trajec-
tory Poisson RFS, components with negligible weights
can be pruned.

VI. EFFICIENT FIXED-LAG SMOOTHING

Multitarget filters based on sets of trajectories are
able to estimate the full state sequence instead of ap-
pending the sequence of estimates at each time step.This
is possible since the posterior density contains full tra-
jectory information. The posterior density over the set
of trajectories can be computed either off-line by apply-
ing fixed-interval smoothing or recursively as new mea-
surements arrive by performing smoothing while filter-
ing. Examples of the latter case include the Gaussian
mixture trajectory (cardinalized) probability hypothesis
density filter proposed in [38] and [39] and the trajec-
tory MBM01 filter proposed in [27] that use an accumu-
lated state density representation [48], and the trajectory
PMBM filter proposed in [31] that uses an information
form [49], to represent the joint state density.

As time progresses, the lengths of the trajectories in-
crease. Eventually, the length may be such that it is com-
putationally beneficial to perform approximate smooth-
ing while filtering. An L-scan implementation is pro-
posed in [27] and [38] that propagates the joint den-
sity of the states of the last L time steps and indepen-
dent densities for the previous states for each trajec-
tory. Still, from the perspective of N-scan pruning, a lot
of unnecessary calculations might be spent on obtaining
the smoothed posterior density for each single trajectory
hypothesis. More specifically, when the data association
ambiguity is high (e.g., targets move in proximity), we
might have hundreds or even thousands of single trajec-
tory hypotheses, and at each time instance we only need
to compute the posterior trajectory mean for those that
are included in the most likely global hypothesis. How-
ever,note that the prediction and update of the hypothe-
ses weights are the same as in the implementation using
smoothing while filtering, e.g., [31].

We propose an efficient fixed-lag smoothing imple-
mentation of multiscan trajectory filters that solves the
above-mentioned problem by combining theL-scan tra-
jectory density approximation with N-scan pruning. Af-
ter N-scan pruning, single trajectory hypotheses in the
same track share the samemeasurement association his-
tory at all times up to time step k−N.Then,we can apply
(N+L)-scan density approximation, such that all single
trajectory hypotheses in the same track share the same
posterior trajectory density up until time step k−N−L.

It is therefore sufficient to perform fixed-lag smoothing
forN+L steps for the most likely global hypothesis, and
then store the parameters of the smoothed target state
densities at time stepk−N−L+1 before proceeding.Fol-
lowing this approach, the extracted posterior trajectory
mean from themost likely global hypothesis at time step
k+1 consists of the newly computed smoothed estimates
for the last N + L steps and the prestored smoothed es-
timates at all times up to k−N − L+ 1.

VII. SIMULATIONS

In this section, we show simulation results that com-
pare five different filters6:

1) multiscan trajectory PMBM filter7;
2) multiscan trajectory MBM filter (footnote 7);
3) multiscan trajectory MBM01 filter (footnote 7);
4) fast implementation of the δ-GLMB filter using

Gibbs sampling8 [35];
5) fast implementation of the LMB filter using Gibbs

sampling (footnote 8) [50].

For all the trajectory filters, we consider the set of all
trajectories problem formulation.

A. Parameter Setup

A 2D Cartesian coordinate system is used to de-
fine measurement and target kinematic parameters. The
kinematic target state is a vector of position and veloc-
ity xk = [px,k, vx,k, py,k, vy,k]T .A singlemeasurement is a
vector of position zk = [zx,k, zy,k]T . Targets follow a lin-
ear Gaussian constant velocity model πk|k−1(xk|xk−1) =
N (xk;Fkxk−1,Qk), with parameters

Fk = I2 ⊗
[
1 T
0 1

]
, Qk = 0.01I2 ⊗

[
T 3/3 T 2/2
T 2/2 T

]
,

where ⊗ is the Kronecker product, Im is an identity ma-
trix of size m × m, and T = 1. The linear Gaussian
measurement likelihood model has density f (zk|xk) =
N (zk;Hkxk,Rk), with parameters Hk = I2 ⊗ [1, 0] and
Rk = I2.

The filters consider that there are no targets at
time step 0. For multiscan trajectory filters, we use
N-scan pruning (N = 3) to remove unlikely global

6The TOMHT implementation developed in [17] can be considered as
a special case of the multiscan trajectory PMBM filter for sets of cur-
rent trajectories where the trajectory estimates consist of target state
estimates that are extracted from the marginal densities over the cur-
rent set of targets. Therefore, we choose not to include the TOMHT
implementation in [17] in the simulation results.
7MATLAB code of the multiscan trajectory PMBM, MBM, and
MBM01 filters is available at https://github.com/yuhsuansia/Multi-
scan-trajectory-PMBM-filter.
8We use the code that Prof. Ba-Ngu Vo and Prof. Ba-Tuong Vo share
online: http://ba-tuong.vo-au.com/codes.html. The authors thank them
for providing the code.
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Fig. 1. True target trajectories for 81 time steps. In both scenarios,
targets are born at times {1, 11, 21, 31} and are dead at times {51, 61,
71, 81}. Targets’ positions every six time steps are marked with a
circle, and their initial positions with a filled circle. In Scenario 1,
there are 12 targets born at four different locations. In Scenario 2,

targets move in close proximity around the midpoint.

hypotheses. In addition to filtering, we also perform
fixed-lag smoothing for the latest four steps. Both fil-
tering and smoothing performances are analyzed. For
the trajectory PMBM filter and the trajectory MBM
filter, Bernoulli components with existence probability
smaller than 10−3 are not updated bymeasurements (see
Section V-D). For the trajectory PMBM filter, we re-
movemixture components in the trajectory PoissonRFS
with weights smaller than 10−3. For the δ-GLMB filter,
the cap on the number of componentsHmax = 2000. El-
lipsoidal gating is used in all the compared filters; the
gating size in probability is 0.999.

We consider two different scenarios with true tra-
jectories shown in Fig. 1. In Scenario 1, targets are well
spaced, and there is at most one target born at the
same location per scan. In Scenario 2, for each tra-
jectory, we initiate the midpoint from a Gaussian with
mean [0, 0, 0, 0]T and covariance matrix I4, and the rest
of the trajectory is generated by running forward and
backward dynamics. This scenario is challenging due to
the fact that all the four targets move in close prox-
imity around the midpoint. In the simulation, we con-
sider constant target survival probability PS = 0.99, con-
stant target detection probability PD = 0.9, and Pois-
son clutter uniform in the region of interest with rate
λFA = 10.

For the trajectory PMBM filter, the Poisson birth in-
tensity has the form λb

k(xk) = ∑
l 0.05N (x; x̄b,l

k ,Pb,l
k ).

For the trajectory MBM filter, the trajectory MBM01

filter, the δ-GLMB filter, and the LMB filter, the lth
Bernoulli component in the multi-Bernoulli birth has
existence probability rb,l

k = 0.05 and single target
state density N (x; x̄b,l

k ,Pb,l
k ). In Scenario 1, we set

x̄b,1
k = [50, 0, 50, 0]T , x̄b,2

k = [50, 0,−50, 0]T , x̄b,3
k =

[−50, 0, 50, 0]T , x̄b,4
k = [−50, 0,−50, 0]T , and Pb,l

k =
diag([4, 1, 4, 1]). In Scenario 2, we set x̄b,1

k = [0, 0, 0, 0]T

and Pb,1
k = diag([1002, 1, 1002, 1]), which covers the

region of interest. It should be noted that the multi-
Bernoulli and Poisson birth models have the same in-
tensity (probability hypothesis density) [6, eq. (4.129)].

This implies that birth models are as close as possible in
the sense of Kullback–Leibler divergence.

B. Performance Evaluation

For all the three multiscan trajectory filters, we esti-
mate the full trajectories directly from the most likely
global hypothesis. For the trajectory filters, we choose
the most likely cardinality estimate n� from the multi-
Bernoulli of the most likely global hypothesis. We then
report trajectory estimates from the n� Bernoulli com-
ponents with the highest existence probabilities. Given
a Bernoulli state density (28), an estimate of the tra-
jectory is obtained by selecting the most probable mix-
ture component j∗ = argmax j w

j
k|k′ and reporting its

mean value [31]. For the δ-GLMB filter and the LMB
filter, we first obtain the maximum a posteriori estimate
of the cardinality. We then find the global hypothesis
with this cardinality with highest weight and report the
mean of the targets in this hypothesis [28]. Trajectories
are formed by connecting target estimates with the same
label.

To evaluate the filtering performance, we used the
generalized optimal subpattern assignment (GOSPA)
metric [51], which can be decomposed into localiza-
tion cost, missed target cost, and false target cost. The
GOSPA metric is applied to the set of current target
states at each time step. To evaluate the tracking per-
formance, the trajectory metric in [52] based on linear
programming (LP) was used, which can be decomposed
into localization cost,missed target cost, false target cost,
and track switch cost.

C. Results

We perform 100 Monte Carlo runs and obtain the
average root-mean-square (RMS) GOSPA error (order
p = 2, location error cutoff c = 10, and α = 2), the
average RMS trajectory estimation error (order p = 2,
location error cutoff c = 10, switch cost γ = 2), and the
average running time, summed over 81 time steps. We
apply the trajectory metric [52] at each time step k, and
normalize it by

√
k. This normalization allows a compar-

ison of how the RMS metric evolves over time in the
scenario, as opposed to only computing the metric at the
final time step.

The comparison of different filters by the RMS
GOSPAerror and by the average running time9 is shown
in Table I for Scenario 1 and in Fig. 2 for Scenario 2.We
can see that the trajectory PMBM filter arguably has the
best performance in terms of target state estimation er-
ror and computational complexity,especially in Scenario
2 with coalescence. By comparing the execution time of
trajectory filters with and without fixed-lag smoothing

9MATLAB implementations on a desktop with 3.0 GHz Intel Core i5
processor.
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TABLE I
Simulation Results for Scenario 1: RMS GOSPA/LP Trajectory Metric Errors and Average Running Time (s)

Algorithm Trajectory PMBM Trajectory MBM Trajectory MBM01 δ-GLMB (Gibbs) LMB (Gibbs)
Fixed-lag smoothing Without With Without With Without With Without Without

GOSPA 150.02 150.02 148.98 148.98 149.33 149.33 151.94 155.21
GOSPA—localization 120.73 120.73 120.76 120.76 120.74 120.74 120.82 120.93

GOSPA—missed 68.10 68.10 66.24 66.24 67.54 67.54 63.71 57.72
GOSPA—false 65.65 65.65 64.04 64.04 63.70 63.70 68.40 77.19

LP trajectory metric 141.91 128.25 141.02 127.15 141.04 127.16 167.50 168.85
LP—localization 123.23 101.72 123.40 101.87 123.35 101.72 123.01 123.01

LP—missed 98.10 98.10 93.81 93.81 93.89 93.89 131.80 128.21
LP—false 56.38 56.38 62.56 62.56 63.19 63.19 107.46 114.76

LP—track switch 9.68 9.68 7.73 7.73 6.00 6.00 22.73 30.79
Average running time (s) 4.41 4.61 8.57 8.90 10.29 10.50 12.87 2.27

Fig. 2. Performance comparison among the δ-GLMB (Gibbs) filter,
the LMB (Gibbs) filter, the trajectory PMBM filter, the trajectory
MBM filter, and the trajectory MBM01 filter in Scenario 2: RMS

GOSPA error versus average running time.

(for the latest four target states), we can find that the
running time of the implemented filters is dominated by
their filtering recursions.

For Scenario 1, the numerical values of the aver-
age RMS GOSPA and the trajectory estimation errors
are given in Table I. For Scenario 2, the average RMS
GOSPA error and its decomposed values over time are

illustrated in Fig. 3, and the average RMS trajectory es-
timation error and its decomposed values over time are
illustrated in Fig. 4.Comparing the results of the two sce-
narios, we can find that when the birth process is less
informative, i.e., a broad birth prior density, the trajec-
tory PMBM filter exhibits lower estimation error than
the trajectory MBM and MBM01 filters.

While the differences in target state estimation er-
ror among different filters are not distinct in both sce-
narios, it is noticeable that trajectory filters yield much
less trajectory estimation error than labeled RFS filters.
The worse trajectory estimation performance of labeled
RFS filters is a result of worse track continuity.There are
two main drawbacks in forming trajectories by connect-
ing target states with the same label: first, misdetections
can lead to gaps in the trajectory formed by labeled esti-
mates; second, physically unrealistic track switching; see
[31, Fig. 2] for an example.

In addition, we can see that performing fixed-lag
smoothing does not change the error due to missed/false
detections and track switching; it mainly improves the
localization error. This is expected since the choice of
N+L has a direct effect on the estimation of past states
of the trajectories. From the results of the simulation
study, we can conclude that the trajectory PMBM fil-
ter has the best tracking performance, and that the tra-
jectory MBM filter is more efficient than the trajectory
MBM01 filter.

Fig. 3. Average target state estimation error in Scenario 2 evaluated using the GOSPA metric. The lines show the RMS error averaged over
100 Monte Carlo runs. Legend: trajectory PMBM filter (without smoothing) (red), trajectory MBM filter (without smoothing) (blue),

trajectory MBM01 filter (without smoothing) (magenta), δ-GLMB (Gibbs) filter (green), and LMB (Gibbs) filter (cyan).
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Fig. 4. Average trajectory state estimation error in Scenario 2 evaluated using the trajectory metric [52]. The lines show the RMS error
averaged over 100 Monte Carlo runs. Legend: trajectory PMBM filter (without smoothing) (red solid line), trajectory PMBM filter (with

smoothing) (red dash-dotted line), trajectory MBM filter (without smoothing) (blue solid line), trajectory MBM filter (with smoothing) (blue
dash-dotted line), trajectory MBM01 filter (without smoothing) (magenta solid line), trajectory MBM01 filter (with smoothing) (magenta

dash-dotted line), δ-GLMB (Gibbs) filter (green), and LMB (Gibbs) filter (cyan).

VIII. CONCLUSION

In this paper,we have presented the trajectoryMBM
filter. We have also presented an efficient implementa-
tion of multiscan trajectory PMBM,MBM, and MBM01

filters using N-scan pruning and dual decomposition.
The performance of the presented multitarget trackers,
applied with an efficient fixed-lag smoothing method, is
evaluated in a simulation study. The simulation results
show that the multiscan trajectory PMBM filter has im-
proved tracking performance over the trajectory MBM
filter in terms of state/trajectory estimation error and
computational time.

APPENDIX A

In this appendix, we first review why FISST can be
used for sets of trajectories.Then,we show how to define
reference measures and measure theoretic integrals for
sets of trajectories.

A1. Use of FISST for Sets of Trajectories

In this section, we review why FISST can be used for
sets of trajectories. The single trajectory space is locally
compact, Hausdorff, and second countable (LCHS) [27,
Appendix A], where second countable is also referred
to as completely separable [53]. LCHS spaces are often
used in random set theory [54], and LCHS is also the
type of single object space required by Mahler’s FISST
[6, Sec. 2.2.2].

In particular, single object/measurement spaces that
are the disjoint union of spaces of different dimensional-
ities, similarly to the single trajectory space, have previ-
ously been used in Mahler’s FISST and RFS framework
in [6, Sec. 2.2.2] and [6, Sec. 11.6] for variable state space
cardinalized probability hypothesis density filters, and in
[6,Ch.18], [55],and [56] forRFS filters for unknown clut-
ter. In addition, [6, Sec. 3.5.3] explicitly explains how the
set integral is constructed for this type of space. There-
fore,Mahler’s FISST and RFS framework on its own en-
ables us to perform inference on sets of trajectories. For
completeness, we proceed to provide also the required
measure theory to define probability densities.

A2. Measure Theoretic Integrals

We begin by introducing some basic concepts in
measure theory; for more details, see, e.g., [57] and [58,
Appendix A]. Consider a nonempty set Y , the pair
(Y, σ (Y )), in which σ (Y ) denotes a σ -algebra of sub-
sets of Y , is called a measurable space.Given a topology
space Y , the Borel σ -algebra is the smallest σ -algebra of
the subsets of Y containing the open sets of Y (or equiv-
alently, by the closed sets ofY).A setB is said to bemea-
surable if B ∈ σ (Y ). A function f : Y → R is said to be
measurable if the inverse images of R under f are mea-
surable. The triple (Y, σ (Y ), μ) in which μ is a measure
on σ (Y ) is called a measure space.

The integral of a measurable function f : Y → R,∫
f (y)μ(dy), is defined as a limit of integrals of simple

functions. The integral of f over any measurable B ⊂ Y
is defined as∫

B
f (y)μ(dy) =

∫
1B(y) f (y)μ(dy), (A.1)

where 1B denotes the indicator function 1B(y) = 1 if y ∈
B and 1B(y) = 0 otherwise.

A3. Measure Theoretic Integrals for Single Object LCHS Spaces

In this section,we explain how to definemeasure the-
oretic integrals for RFSs whose single objects belong to
LCHS spaces, following the steps in [58, Appendix B].

We denote an LCHS space as E. For instance, E
could denote the single object space X or the single tra-
jectory space Tk.We also let F (E) denote the collection
of finite subsets of E.10

A common class of RFSs is the Poisson point pro-
cesses. A Poisson point process ϒ is an RFS that is
characterized by the property that for any k disjoint
Borel subsets S1, . . . ,Sk of E, the random variables |ϒ ∩
S1|, . . . , |ϒ ∩ Sk| are independent and have a Poisson
distribution. The mean of the Poisson random variables
|ϒ∩Si| is denoted as vϒ (Si).The function vϒ (·) is a (unit-
less) measure on the Borel subsets of E and is referred

10We would like to clarify that the topology on F (E) is the myopic of
Mathéron topology [59], for which we require an LCHS space. To be
precise, second countability, not only separability as indicated in [58,
Appendix B], is required in the Mathéron topology [59, Sec. 1.1], as it
makes use of a countable base [59, p. 1].
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to as the intensity measure of ϒ . If the mapping from
vectors to finite sets is denoted as χ : �∞

n=0E
n → F (E),

we have that χ ((x1, . . . , xn)) = {x1, . . . , xn}. Then, the
probability distribution of ϒ is [58, Appendix B]

Pϒ (B) = e−vϒ (E)
∞∑
n=0

vnϒ (χ
−1(B) ∩ En)
n!

, (A.2)

where B is a Borel subset of F (E), χ−1 is the inverse
mapping of χ , and vnϒ (·) is the nth product (unitless)
Lebesgue measure of vϒ (·).

We define the measure μ(·), on the Borel subsets of
F (E), as

μ(B) =
∞∑
n=0

vnϒ (χ
−1(B) ∩ En)
n!

, (A.3)

which is proportional to the probability distribution
Pϒ (·).The integral of ameasurable function f : F (E) →
R with respect to the measure μ(·) is then [58,Appendix
B]

∫
B
f (X)μ(dX)

=
∞∑
n=0

1
n!

∫
χ−1(B)∩En

f ({x1, . . . , xn})vnϒ (dx1 · · ·dxn).

(A.4)

A4. Reference Measure for Sets of Trajectories

In the previous section, we explained how to define
a measure theoretic integral with respect to a measure
μ(·) on the Borel subsets of F (E) in terms of a measure
vϒ (·) on the Borel subsets of E. We proceed to choose
a specific measure vϒ (·) when E is the single trajectory
space Tk = �(β,ε)∈Ik{β} × {ε} ×X ε−β+1 and X = R

n. This
will allow us to write the measure theoretic integrals for
sets of trajectories in terms of standard Lebesgue inte-
grals and establish the correspondence withMahler’s set
integral (8).

We first denote the units of the hypervolume in the
single target space X asK. For example, if the single tar-
get state is [px, vx] with px beingmeasured inmeters (m)
and vx being measured in meters per second (m/s), then
K = m2/s.

Given a Borel subset S of Tk, which can be written
as S = �(β,ε)∈Ik{β} × {ε} × Sε−β+1,Sε−β+1 ⊂ X ε−β+1, we
choose the measure vϒ (·) in the single trajectory space
as

vϒ (S) =
∑

(β,ε)∈Ik

λKε−β+1 (Sε−β+1)
Kε−β+1

, (A.5)

where λKε−β+1 (·) represents the Lebesgue measure of
Sε−β+1 (with unitsKε−β+1). Therefore, λKε−β+1 (·)/Kε−β+1

represents the unitless Lebesgue measure on X ε−β+1.
The normalization of each term in (A.5) by Kε−β+1 is
needed so that we can perform the sum; otherwise, the

sum would consider terms with different units, which is
erroneous. It is straightforward to check that (A.5) is a
measure on the Borel subsets of Tk. That is, vϒ (·) meets
the following three properties that define measures [60]:

1) For any S, vϒ (S) ≥ 0.
2) vϒ (∅) = 0.
3) If S1,S2, . . . is a disjoint sequence, then

vϒ (
∑∞

j=1 S
j) = ∑∞

j=1 vϒ (Sj).

It is straightforward that the first two properties hold.
For the third one, we have

vϒ

⎛
⎝ ∞∑

j=1

Sj

⎞
⎠ =

∑
(β,ε)∈Ik

λKε−β+1

(∑∞
j=1 S

j
ε−β+1

)
Kε−β+1

=
∞∑
j=1

∑
(β,ε)∈Ik

λKε−β+1

(
Sj

ε−β+1

)
Kε−β+1

=
∞∑
j=1

vϒ (Sj),

(A.6)

where we have applied that λKε−β+1 (·) is a measure.
We substitute (A.5) into (A.4) and integrate over the

whole space,which implies that B satisfies that χ−1(B)∩
T n
k = T n

k . We have that∫
f (X)μ(dX)

=
∞∑
n=0

1
n!

∫
T n
k

f ({X1, . . . ,Xn})vnϒ (dX1 · · · dXn)

=
∞∑
n=0

1
n!

∫
Tk

· · ·
∫
T n
k

f ({X1, . . . ,Xn})vϒ (dX1)

· · · vϒ (dXn)

=
∞∑
n=0

1
n!

∑
(β1,ε1 )∈Ik

· · ·
∑

(βn,εn)∈Ik

∫
X ε1−β1+1×···×X εn−βn+1

f
({(

β1, ε1, x
1:ε1−β1+1
1

)
, . . . ,

(
βn, εn, x1:εn−βn+1

n

)})
λKε1−β1+1

(
dx1:ε1−β1+1

1

)
Kε1−β1+1

· · · λKεn−βn+1

(
dx1:εn−βn+1

n
)

Kεn−βn+1
.

(A.7)

If we further rewrite λKεi−βi+1 (dx1:εi−βi+1
i ) as dx1:εi−βi+1

i
and abbreviate

∫
X ε1−β1+1×···×X εn−βn+1 as

∫
, then we have

that

∫
f (X)μ(dX) =

∞∑
n=0

1
n!

∑
(β1,ε1 )∈Ik

· · ·
∑

(βn,εn)∈Ik

∫
· · ·
∫

f
({
(β1, ε1, x

1:ε1−β1+1
1

)
, . . . ,

(
βn, εn, x1:εn−βn+1

n

)})
dx1:ε1−β1+1

1

Kε1−β1+1
· · · dx

1:εn−βn+1
n

Kεn−βn+1
. (A.8)

228 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 2 DECEMBER 2019



Therefore, for the reference measure μ(·) in
(A.3) and vϒ (·) in (A.5), the measure theoretic in-
tegral corresponds to Mahler’s set integral over sets
of trajectories (8) but normalized by the units of
the differential dx1:ε1−β1+1

1 , . . . ,dx1:εn−βn+1
n , which are

Kε1−β1+1, . . . ,Kεn−βn+1. The relation between set inte-
grals and measure theoretic integrals is similar in the
single target case [58]. Therefore, if probability densi-
ties on sets of trajectories are defined with respect to
the reference measure μ(·), with vϒ (·) given by (A.5),
Mahler’s multitrajectory densities are equivalent to
measure theoretic densities, except for the normalizing
units. Note that if the state space has no units, the
measure theoretic integral and Mahler’s set integral are
alike.

APPENDIX B

In this appendix, we proceed to explain how to use
PGFLs, functional derivatives, and the fundamental the-
orem of multi-object calculus for RFSs of trajectories.
These results are important as PGFLs are useful tools to
derive filters. First, the prediction and update steps can
be performed in the PGFL domain. Second, the funda-
mental theorem of multi-object calculus indicates how
to recover the corresponding multi-object density from
a PGFL, which requires functional derivatives. We ex-
plain PGFLs in Appendix E and functional derivatives
inAppendix F. InAppendixG,we provide and prove the
fundamental theorem of multi-object calculus for RFSs
of trajectories.

B1. Probability Generating Functionals

PGFLs for sets in LCHS spaces, such as the trajec-
tory space, are defined in [6, Secs. 4.2.4 and 4.2.5]. Let
h : Tk �→ [0, 1] be a test function defined on the trajec-
tory state space Tk = �(β,ε)∈Ik{β}×{ε}×X ε−β+1.LetX be
an RFS of trajectories with multitrajectory density f (·),
then its PGFL is

GX [h] = E
[
hX
] =

∫
hX f (X) δX, (B.1)

where

hX =
{∏

X∈X h (X ) , X �= ∅,

1, X = ∅.

Note that both h(X ) and the PGFL are unitless func-
tions, i.e., functions whose output has no units.

B2. Functional Derivatives

In this section, we explain (Volterra) functional
derivatives for RFS of trajectories using FISST tools.We
consider a unitless functional F [h] defined on unitless
real-valued functions h (X ) with X ∈ Tk, e.g., a PGFL.
Then,using FISST, the functional derivative ofF [h] with
respect to a finite subset Y ∈ F (Tk) is defined to be [32,

Sec. 11.4]

δF
δY

[h] =
⎧⎨
⎩
F [h] , Y = ∅,

limε→0
F [h+εδY ]−F [h]

ε
, Y = {Y } ,

δnF
δY1···δYn [h] , Y = {Y1, . . . ,Yn} ,

(B.2)

where the Dirac delta on the single trajectory space is

δ(β ′,ε′,yβ′ :ε′ ) (β, ε, xβ:ε)

=
{
δ (xβ:ε − yβ ′:ε′ ) , β = β ′, ε = ε′,
0, β �= β ′, ε �= ε′,

and we use the notational convention
δF

δ {Y } [h] = δF
δY

[h] .

Also, note that the Dirac delta on the single trajectory
space meets the following identity:∫

δY (X ) f (X ) dX = f (Y ) .

We remark that the use of δY as the input of the func-
tional is a tool of FISST that is not completely rigorous
[6, p. 66], but admitted from a practical point of view. Set
derivatives can be defined in terms of functional deriva-
tives [6, p. 67].

B3. Fundamental Theorem of Multi-Object Calculus

The fundamental theorem of multi-object calculus
enables the recovery of a multi-object density from its
PGFL [6, Sec. 3.5.1]. This result also applies to RFS of
trajectories, and we provide a proof for completeness.

Theorem 4. Given the PGFLGX [h] of an RFSX of tra-
jectories, we can recover its multitrajectory density f (·)
evaluated at Y as

f (Y) =
[
δGX

δY
[h]
]
h=0

. (B.3)

The proof of this theorem is direct for Y = ∅ by sub-
stituting (B.2) into (B.1). For Y �= ∅, the theorem is a
direct consequence of the following lemma.

Lemma 1. The functional derivative of the PGFLGX [h]
of an RFS X of trajectories with respect to Y =
{Y1, . . . ,Yn} is

δnGX

δY1 · · · δYn [h] =
∫
hX f ({Y1, . . . ,Yn} ∪ X) δX, (B.4)

where f (·) is its multitrajectory density.
The proof of Lemma 1 is given in Appendix G1.

Then, by substituting h = 0, we directly obtain (B.3) for
Y �= ∅. We also have[

δGX

δY
[h]
]
h=1

=
∫

f ({Y } ∪ X) δX,

which represents the first-order moment, also called in-
tensity and probability hypothesis density, as required.
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B3.1. Proof of Lemma 1

In this section, we prove (B.4) by using induction. In
part I of the proof, we prove (B.4) for Y = {Y }. Then, in
part II, we prove the general case Y = {Y1, . . . ,Yn}.

B3.1.1. Part I of the proof

For Y = {Y }, we proceed to prove that

δGX

δY
[h] =

∫
hX f ({Y } ∪ X) δX.

For Y = {Y }, we have

δGX

δY
[h]

= lim
ε→0

GX [h+ εδY ] −GX [h]
ε

= lim
ε→0

∫
[h+ εδY ]

X f (X) δX − ∫
[h]X f (X) δX

ε

= lim
ε→0

∑∞
n=1(1/n!)

∫
f ({X1, . . . ,Xn}) × · · ·

ε

× [
∏n

j=1[h(Xj) + εδY (Xj)] −∏n
j=1 h(Xj)]dX1:n

ε
,

where X1:n = (X1, . . . ,Xn). The limit can be computed
by applying L’Hôpital’s rule and taking derivatives with
respect to ε. This results in

δGX

δY
[h]

= lim
ε→0

∞∑
n=1

1
n!

∫ n∑
j=1

⎡
⎣δY (Xj)

n∏
i=1:i�= j

h (Xi + εδY (Xi))

⎤
⎦

× f ({X1, . . . ,Xn})dX1:n

=
∞∑
n=1

1
n!

n∑
j=1

∫ ⎡
⎣δY (Xj)

n∏
i=1:i�= j

h (Xi)

⎤
⎦

× f ({X1, . . . ,Xn})dX1:n.

The inner integral is the same for every j, sowe canwrite

δGX

δ {Y } [h]

=
∞∑
n=1

1
n!
n
∫ [

δY (X1)
n∏
i=2

h (Xi)

]

× f ({X1, . . . ,Xn})dX1:n

=
∞∑
n=1

1
(n− 1)!

∫ [ n∏
i=2

h (Xi)

]
f ({Y,X2, . . . ,Xn}) dX2:n.

We further make the change of variablesm = n− 1 and
X ∗

1:m = X2:n in the previous equation, which yields

δGX

δ {Y } [h]

=
∞∑
m=0

1
m!

∫ [ m∏
i=1

h (X ∗
i )

]
f
({Y } ∪ {X ∗

1 , . . . ,X ∗
m

})
dX ∗

1:m

=
∫
hX f ({Y } ∪ X) δX. (B.5)

B3.1.2. Part II of the proof

We proceed to prove (B.4) by induction. We assume
that

δn−1GX

δY1 · · · δYn−1
[h] =

∫
hX f ({Y1, . . . ,Yn−1} ∪ X) δX

(B.6)

holds and proceed to prove (B.4). Note that the relation
holds for n = 1, as proved in the previous section. We
denote

L [h] =
∫
hXl (X) δX,

where

l (X) = f ({Y1, . . . ,Yn−1} ∪ X) .

Then, by making use of (B.5), we obtain

δnGX

δY1 · · · δYn [h] = δ

δYn
L [h]

=
∫
hXl ({Yn} ∪ X) δX

=
∫
hX f ({Y1, . . . ,Yn} ∪ X) δX.

This result completes the proof of Lemma 1.

APPENDIX C

In this appendix, we present the MBM01 filtering re-
cursions for both the set of current trajectories and the
set of all trajectories. TheMBM01 filtering recursions for
the set of all trajectories were first given in [27]; they are
presented here for completeness.

C1. Prediction Step for the Set of Current Trajectories

The prediction step is given in the following theorem.

Theorem 5. Assume that the distribution from the pre-
vious time step fk−1|k−1(Xk−1) is given by (20) with
ri,a

i

k−1|k−1 ∈ {0, 1}, that the transition model is (12), and
that the birth model is a trajectory multi-Bernoulli RFS
with nbk Bernoulli components, each of which has den-
sity given by (10). Then, the predicted distribution for the
next step fk|k−1(Xk) is given by (20) with r

i,ai

k|k−1 ∈ {0, 1}
and nk|k−1 = nk−1|k−1 + nbk. For tracks continuing from
previous time (i ∈ {1, . . . ,nk−1|k−1}), a hypothesis is in-
cluded for each combination of a hypothesis from a pre-
vious time and either a survival or a death. For new tracks
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(i ∈ {nk−1|k−1 + l}, l ∈ {1, . . . ,nbk}), a hypothesis is in-
cluded for each combination of a Bernoulli component
in the multi-Bernoulli birth density and either born or
not born. The number of hypotheses therefore becomes
hik|k = 2(hik|k−1 + nbk).

11 For survival hypotheses (i ∈
{1, . . . . ,nk−1|k−1}, ai ∈ {1, . . . ,hk−1|k−1}), if ri,aik−1|k−1 = 1,
the parameters are

wi,ai

k|k−1 = wi,ai

k−1|k−1

〈
f i,a

i

k−1|k−1;PS
k−1

〉
, (C.1a)

ri,a
i

k|k−1 = 1, (C.1b)

f i,a
i

k|k−1(X ) = 〈
f i,a

i

k−1|k−1;π c〉. (C.1c)

If ri,a
i

k−1|k−1 = 0, the parameters are

ri,a
i

k|k−1 = 0, (C. 2a)

wi,ai

k|k−1 = 0. (C. 2b)

For death hypotheses (i ∈ {1, . . . ,nk−1|k−1}, ai = ãi +
hik−1|k−1, ã

i ∈ {1, . . . ,hik−1|k−1}), the parameters are

wi,ai

k|k−1 = wi,ai

k−1|k−1〈 f i,a
i

k−1|k−1; 1 − PS
k−1〉, (C.3a)

ri,a
i

k|k−1 = 0. (C.3b)

For birth hypotheses (i ∈ {nk−1|k−1 + l}, l ∈
{1, . . . ,nbk}), the parameters are

Mk−1(i, 1) = ∅, (C.4a)

wi,1
k|k−1 = rb,l

k , (C.4b)

ri,1k|k−1 = 1, (C.4c)

f i,1k|k−1(X ) = fB,l
k (X ). (C.4d)

For nonbirth hypotheses (i ∈ {nk−1|k−1 + l}, l ∈
{1, . . . ,nbk}), the parameters are

Mk−1(i, 2) = ∅, (C.5a)

wi,2
k|k−1 = 1 − rb,l

k , (C.5b)

ri,2k|k−1 = 0. (C.5c)

Compared to the corresponding prediction steps (23)
and (24) in the trajectory MBM filter, the MBM01 pa-
rameterization entails an exponential increase in the
number of global hypotheses.

C2. Prediction Step for the Set of All Trajectories

The prediction step is given in the following theorem.

Theorem 6. Assume that the distribution from the pre-
vious time step fk−1|k−1(Xk−1) is given by (20) with
ri,a

i

k−1|k−1 ∈ {0, 1}, that the transition model is (13), and

11A hypothesis at the previous time with ri,a
i

k−1|k−1 = 0 would be re-
moved by setting its hypothesis weight to zero. For simplicity, the hy-
pothesis numbering does not account for this exclusion.

that the birth model is a trajectory multi-Bernoulli RFS
with nbk Bernoulli components, each of which has density
given by (10).Then, the predicted distribution for the next
step fk|k−1(Xk) is given by (20), with r

i,ai

k|k−1 ∈ {0, 1} and
nk|k−1 = nk−1|k−1 + nbk. For tracks continuing from previ-
ous time (i ∈ {1, . . . ,nk−1|k−1}), the number of hypothe-
ses remains the same. For new tracks (i ∈ {nk−1|k−1 + l},
l ∈ {1, . . . ,nbk}), a hypothesis is included for each com-
bination of a Bernoulli component in the multi-Bernoulli
birth density and either born or not born. The number of
hypotheses therefore becomes hik|k = hik|k−1 + 2nbk.

For hypotheses in tracks continuing from previous
time (i ∈ {1, . . . ,nk−1|k−1}, ai ∈ {1, . . . ,hk−1|k−1}), the pa-
rameters are

wi,ai

k|k−1 = wi,ai

k−1|k−1 ∀ai, (C.6a)

ri,a
i

k|k−1 = 1, (C.6b)

f i,a
i

k|k−1(X ) = 〈 f i,aik−1|k−1;πa〉 ∀ai. (C.6c)

For new tracks (i ∈ {nk−1|k−1 + l}, l ∈ {1, . . . ,nbk}), the
parameters of MBM01 parameterization are the same as
(64) and (65).

C3. Update Step

The update step is given in the following theorem.

Theorem 7. Assume that the predicted distribution
fk|k−1(Xk) is given by (20) with r

i,ai

k|k−1 ∈ {0, 1}, that the
measurement model is (15), and that the measurement set
at time step k is zk = {z1k, . . . , zmk

k }. Then, the updated
distribution fk|k(Xk) is given by (20), with r

i,ai

k|k ∈ {0, 1}
and nk|k = nk|k−1. For each track (i ∈ {1, . . . ,nk|k}), a
hypothesis is included for each combination of a hypoth-
esis from a previous time with ri,a

i

k|k−1 = 1 and either a
misdetection or an update using one of the mk new mea-
surements, such that the number of hypotheses becomes
hik|k = hik|k−1(1 + mk).12 For misdetection hypotheses

(i ∈ {1, . . . ,nk|k}, ai ∈ {1, . . . ,hk|k−1}) with ri,aik|k−1 = 1,
the parameters are

Mk(i, ai) = Mk−1(i, ai), (C.7a)

wi,ai

k|k = wi,ai

k|k−1

(
1 − 〈

f i,a
i

k|k−1;PD〉), (C.7b)

ri,a
i

k|k = 1, (C.7c)

f i,a
i

k|k (X ) =
(1 − PD

k (X )) f i,a
i

k|k−1(X )〈
f i,a

i

k|k−1; 1 − PD
〉 . (C.7d)

For hypotheses updating tracks (i ∈ {1, . . . ,nk|k}, ai =
ãi + hik|k−1 j, ã

i ∈ {1, . . . ,hik|k−1}, j ∈ {1, . . . ,mk}, i.e.,

12A hypothesis at the previous time with ri,a
i

k|k−1 = 0 must not be up-
dated. For simplicity, the hypothesis numbering does not account for
this exclusion.
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the previous hypothesis ãi, updated with measurement z jk)

with ri,a
i

k|k−1 = 1, the parameters are

Mk(i, ai) = Mk−1(i, ãi) ∪ {(k, j)}, (C.8a)

wi,ai

k|k =
wi,ai

k|k−1

〈
f i,ã

i

k|k−1;ϕ
(
z jk
∣∣ · )PD

〉
λFA(z jk)

, (C.8b)

ri,a
i

k|k = 1, (C.8c)

f i,a
i

k|k (X ) =
ϕ
(
z jk
∣∣X )PD

k (X ) f i,ã
i

k|k−1(X )〈
f i,ã

i

k|k−1;ϕ
(
z jk
∣∣ · )PD

k

〉 . (C.8d)
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